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We study the spin-1/2 Ising model on a Bethe lattice in the mean-field limit, with the interaction constants
following one of two deterministic aperiodic sequences, the Fibonacci or period-doubling one. New algorithms
of sequence generation were implemented, which were fundamental in obtaining long sequences and, there-
fore, precise results. We calculate the exact critical temperature for both sequences, as well as the critical
exponents �, �, and �. For the Fibonacci sequence, the exponents are classical, while for the period-doubling
one they depend on the ratio between the two exchange constants. The usual relations between critical expo-
nents are satisfied, within error bars, for the period-doubling sequence. Therefore, we show that mean-field-like
procedures may lead to nonclassical critical exponents.
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Considerable attention has been devoted to the investiga-
tion of systems displaying inhomogeneous or disordered in-
teractions �1�. These systems have experimental relevance,
since many of the materials found in nature come with im-
purities. Moreover, modern techniques are able to build ma-
terials with controlled composition, such that two or more
different atoms are combined in a given order �2�. Theoreti-
cally, one possible question is to what extent the introduction
of quenched disorder may affect the critical behavior of an
originally pure system �1�. The answer to this question for
random disorder is given by the Harris criterion �3�: if the
pure system’s specific-heat exponent � is positive �negative�,
the critical behavior of the disordered model is different from
�the same as� that of the pure model.

The discovery of quasicrystals �2� has motivated the in-
troduction of another kind of inhomogeneity in a system: its
interactions are now modulated by aperiodic sequences, ob-
tained from, for example, deterministic substitution rules.
These sequences have been a subject of intense research in
recent years �4�; numerical �5� as well as analytical results
�6� have been obtained and the so-called Harris-Luck crite-
rion is available �7�. According to this criterion, the rel-
evance of a given aperiodic sequence is connected to the
crossover exponent �=1−da�0�1−	�, where da is the di-
mension in which the aperiodic sequence acts, �0 is the cor-
relation length’s critical exponent in the pure model, and 	 is
defined through g�N	. Here, g is the fluctuation in numbers
of a given letter of the sequence, and N is the length of the
sequence �see below�. Generally speaking, the greater the
fluctuation of the sequence the easier it is to move the critical
behavior of the system away from the homogeneous case.
We can use many approaches to address the influence of
aperiodicity on critical behavior. The mean field is perhaps
the most used approximation in condensed matter problems,
ranging from complex fluids �8� and superconductivity �9� to
Bose-Einstein condensation �10� and magnetism �11,12�.
One possible realization of a mean-field picture is the Bethe
lattice: the critical exponents for homogeneous models in

this geometry are classical �as for the usual mean-field ap-
proximations�, namely, �=1 /2, �=1, and �=3, for example.
In the present case, we arrive at the surprising result that
aperiodic modulation of exchange constants may change the
critical exponent of a magnetic system within a mean-field
approximation. Therefore, the application of this approach
seems to be generally useful in the study of critical phenom-
ena in complex systems.

Our goal in this paper is twofold: to investigate whether
there are changes in the universality class of magnetic sys-
tems with aperiodic interactions in high-dimensional systems
and to determine the existence or not of nonclassical critical
exponents within a mean-field framework. To achieve this,
we define the Ising model on a Bethe lattice, which has
proven to be a good approximation to the critical behavior in
dimension 3 or above. In this geometry, no closed loops are
allowed; see Fig. 1 for an example of a portion of a Bethe
lattice with z=3. The model we study is defined by the
Hamiltonians:

H1/2 = − �
�i,j�

Jnsisj, si = 
 1, �1�

where the sum is over nearest-neighbor spins and Jn is the
exchange constant between sites in generations n and n+1
and may have different values, depending on the generation
and the corresponding letter in the aperiodic sequence �al-
though all interactions between the same pair of generations
have the same value�.

The exchange constant Jn is chosen according to the cor-
responding letter in the aperiodic sequence. The construction
of the aperiodic sequence is made in the Bethe lattice from
the exterior to the interior, i.e., the first letters of the se-
quence correspond to the interactions between generations in
the exterior of the lattice. The sequences we have studied are
the following.

�i� The Fibonacci sequence, built from the substitution
rules A→AB , B→A. The first stages of this sequence are
A→AB→ABA→ABAAB→ABAABABA. This last finite se-
quence corresponds to the following sequence of interaction
constants: JAJBJAJAJBJAJBJA.

�ii� The period-doubling sequence: in this case the substi-*nsbranco@fisica.ufsc.br
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tution rules are A→AB and B→AA. The first letters of the
interaction constant sequence are JAJBJAJAJAJBJAJB.

The geometrical characteristics of aperiodic sequences
can be obtained from the substitution matrix M, which con-
nects the number of letters A and B after one application of
the iteration rule, namely,

	NA
�n+1�

NB
�n+1� 
 = M	NA

�n�

NB
�n� 
 , �2�

where N�
�n� is the number of letters � �A or B� after n itera-

tions of the substitution rule. In particular, the total number
of letters, N�n�, grows exponentially with the number of itera-
tions n:

N�n� � �1
n as n → 
 , �3�

where �1 is the greater eigenvalue of M. The fraction of
letters A �B�, pA �pB�, in the infinite word, i.e., after n ap-
plications of the iteration rules, for large n, is proportional to
the first �second� entry of the eigenvector corresponding to
the greater eigenvalue of M �see Ref. �13� for more details�.
The fluctuation g�n� of a given letter, say A, is defined as

g�n� = NA
�n� − pAN�n�. �4�

It is possible to show that g�N	, where 	
=log10��2� / log10 �1 ��2 is the smaller eigenvalue of the sub-
stitution matrix�. In a linear chain, the fluctuation is greater
for the period-doubling sequence than for the Fibonacci one
�see below for a discussion of this point�.

The solution on a Bethe lattice is obtained from a map-
ping between partial magnetizations of two consecutive gen-
erations; see �14� for a detailed calculation of this mapping.
In the mean-field limit, z→
, Jn→0, such that the product

J̃n�zJn is finite, and for external magnetic field h, the ex-
pression simplifies a great deal and we obtain

mn+1 = tanh�K̃nmn + H� , �5�

where mi is the partial magnetization in generation i, K̃n

� J̃n /kBT, T is the temperature, kB is the Boltzmann constant,

and H=h /kBT. Note that we took the mean-field limit in
order to simplify the equations and calculate the critical tem-
perature analytically.

The critical points of the model studied here are at zero
external field. The exact critical temperature is given by the
stability limit of the paramagnetic phase, obtained from


dmn

dm1



�m�=0
= 1, �6�

where mn is the magnetization of spins in generation n �n
→
�, m1 is the magnetization of spins in generation 1, and
�m�=0 means that the derivatives are taken at the point
where the magnetization of all generations from 1 to n−1 is
zero. We then obtain

kBTc

J̃A

= �1 + r�pB, �7�

where Tc is the critical temperature, �1+r�� J̃B / J̃A, and pB is
the fraction of interactions JB in the thermodynamic limit. As
discussed above, this fraction is proportional to the second
entry of the eigenvector corresponding to the largest eigen-
value of the matrix M �13�. It is important to know Tc ex-
actly �or with a very good precision� in order to obtain reli-
able values for the exponent �.

The magnetization is not uniform; rather, it follows an
aperiodic sequence. Therefore, we will calculate and discuss
the behavior of the mean magnetization, defined by

m̄ �
1

N
�
i=1

N

mi, �8�

where mi is the partial magnetization in generation i, calcu-
lated through Eq. �5�. This is also the physical quantity that
would be accessible to experiments. In order to calculate �,
we define the zero-field susceptibility �=�m̄ /�h, related to
the mean magnetization.

At this point, it is worth recalling that, for systems such
that the length-scaling parameter, in the renormalization-
group context, cannot assume any value, thermodynamic
quantities may follow log-periodic scaling laws �15–17�. The
mean magnetization at zero external magnetic field, for ex-
ample, is written as

m̄ = t�P�log10�t�� , �9�

where t= �Tc−T� /Tc is the reduced temperature and P�x� is a
periodic function of x. Therefore, the logarithmic derivative
of m̄ at h=0 is given by

d log10 m̄

d log10 t
= � + P̃�log10�t�� , �10�

where P̃�x� is also a periodic function of x. In an analogous
way,

d log10 m̄

d log10 h
= 1/� + Q̃�log10�h��, T = Tc, �11�

and

�

�

�

�

��

�

�

�

N

N−1
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N−2

N−1 N−1

N−2

N−2

N−2
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FIG. 1. Portion of a Bethe lattice with coordination number z
=3. Spins are represented by black dots. Generations are linked by
dashed lines �which do not represent interactions between spins�
and the interaction constants between different generations �con-
tinuous lines� may have two different values, JA or JB.
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d log10 �

d log10 t
= � + R̃�log10�t��, h = 0, �12�

where Q̃ and R̃ are periodic functions of their arguments. Our
strategy is to calculate the derivatives, do a best fit to a
log-periodic function plus a constant, and obtain the values
of the respective exponents from this fit. Some points are
worth stressing. In order to calculate this derivative numeri-
cally, we need two values of m̄ in the thermodynamic limit.
These are obtained in the following way. We start with an
arbitrary value of m1 and iterate Eq. �5� many times, keeping
track of the mean magnetization throughout the process �the
number of iterations we used to obtain these results are about
108 for the Fibonacci sequence and �1011 for the period-
doubling sequence�. After a transient and a sufficient number
of iterations, the mean magnetization fluctuates around a
monotonic trend �see Fig. 2�, which does not depend on the
initial value m1. From these values, we can extrapolate to the
thermodynamic limit. This procedure can be done for zero or
nonzero magnetic field; therefore, we can calculate m̄ as a
function of t or h, and the susceptibility �.

In Fig. 2 we depict mN /N for the Fibonacci sequence for
h=0, where N is the total number of generations of the Bethe
lattice or, equivalently, the number of letters generated for
the sequence, together with the extrapolation procedure. We
take two consecutive pairs of values of mN and make a linear
extrapolation of each pair to the limit 1 /N→
. The extrapo-
lated value is taken as the mean of the two values obtained
and its error is estimated as half the interval. This is an
overestimation of the error but we are sure the true extrapo-
lated value is within the interval. We have compared our
procedure with more formal extrapolations like the so-called
VBS �18� and BST �19�. The extrapolated value is the same,
although the error estimation is somewhat arbitrary for the
VBS algorithm and clearly underestimated for the BST one.
With this procedure, we were able to calculate the derivative
in Eqs. �10�–�12� in the thermodynamic limit.

A crucial point should be mentioned here: only using new
algorithms were we able to generate very long sequences for
the period-doubling case. With these algorithms, we need to

store only N letters, in order to use an N2-letter sequence.
Long sequences allow for a reliable and precise extrapolation
to the thermodynamic limit �see below�. The algorithm for
the period-doubling sequence works as follows. If an
N2-letter sequence, with N=2n, n integer, is generated and it
is written in lines of length N, one over the other, it is easy to
see that the first N−1 columns have the same letter as in the
first line of the corresponding column, while the last column
repeats the first line if n is even or repeats the first line with
A and B exchanged if n is odd. Therefore, one needs to
generate and store only the first line, with N letters, to be
able to work with an N2 sequence. This algorithm, although
with more complicated rules, can be used for other se-
quences, which allow for economy in time and space.

Our results can be summarized in the following figures,
where we depict the derivatives in Eqs. �10�–�12�. These
equations tell us that the logarithmic derivatives are repre-
sented by periodic functions of log10 t or log10 h, with a
mean given by the value of the respective exponent. For the
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FIG. 3. Logarithmic derivative of the magnetization as a func-
tion of the reduced temperature for the Fibonacci sequence. We
show the behavior for different values of r and for different num-
bers of generations of the Bethe lattice. For comparison, the result
for the uniform model �r=0� is also depicted. It is clear that � is the
same for the uniform and aperiodic models.
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FIG. 2. Magnetization as a function of the
number of generations of the Bethe lattice or,
equivalently, of the number of letters of the ape-
riodic sequence, for the Fibonacci sequence. We
show a linear extrapolation procedure to obtain
the thermodynamic limit for the magnetization
and its error, for r=4 �see text�, 102, 334, and
155 generations and log10�t�=10−2.5.
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Fibonacci sequence �Fig. 3�, it is clear that the aperiodic
modulation does not change the exponent � from its classical
value, 1/2. Note the behavior of the log-derivative when the
size of the Bethe lattice �or, equivalently, of the aperiodic
sequence� is increased: for large values of the reduced tem-
perature t, we are outside of the scaling region and Eq. �10�
is not expected to be obeyed. When the reduced temperature
is decreased, the correlation length increases and eventually
it grows bigger than the number of generations of the Bethe
lattice, leading to the finite-size effect seen in the left-hand
size of the curves �they decrease from the classical value
1/2�. When the size of the lattice is increased, this departure
from the infinite-size behavior takes place at lower values of
t, as expected. This finite-size effect is also represented by
the size of the error bars, as depicted in Figs. 4, 6, and 7 �we
will comment more on this aspect below�. The same overall
behavior is obtained for � and �, which assume their classi-
cal values, 1 and 3, respectively.

The scenario is more interesting for the period-doubling
sequence. Although the sequences we need to generate are
bigger than in the Fibonacci case, we were able to determine
precise values for the exponents �, �, and �, which depend
on the interaction ratio r. In Fig. 4 we show the logarithmic
derivative of m̄ as a function of log10 t for r=1 and 6. The
scaling region spans three decades, and the exponent is
clearly different from the classical value 1/2: a fitting of the
data to a log-periodic function leads to �=0.5093�4� and
0.5664�5� for r=1 and 6, respectively. The exponent � de-
pends on the ratio r, as depicted in Fig. 5: the overall behav-
ior is the same as that found in Ref. �20�, but for a different
sequence. There is a symmetry with respect to r=0: the ex-
ponent � is the same for 1+r= l and 1+r=1 / l, i.e., it is
invariant with respect to the exchange JA↔JB. The exponent
� increases for the aperiodic model, when compared to its
uniform value. This is consistent with the following picture.
The new �aperiodic� fixed points, in the renormalization-
group sense, must have a greater value of � than that for the
uniform model ��0�. Therefore, assuming �=1 /yt to be valid,
where yt is the usual temperature scaling exponent in the
renormalization-group equations, yt is smaller for the aperi-
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FIG. 4. Logarithmic derivative of the magnetization as a func-
tion of the reduced temperature for the period-doubling sequence,
with r=1 and 6. The log-periodic behavior is clearly identified, and
the values for � are different from the classical value 1/2. The
continuous line and circles �traced line and squares� represent r
=1 �r=6�, and the length of the sequences is 232.

-12 -10 -8 -6
log

10
(h)

0.326

0.328

0.33

0.332

0.334

0.336

0.338

d
lo

g 10
(m

)/
d

lo
g 10

(h
)

r = 1
r = 6

δ-1
= 0.33327(1)

δ-1
= 0.3304(1)

FIG. 6. Logarithmic derivative of the magne-
tization as a function of the magnetic field, at T
=Tc, for the period-doubling sequence, with r
=1 and 6. The exponent 1 /� is different from the
classical value 1/3 and depends on r. The con-
tinuous line and circles �traced line and squares�
represent r=1 �r=6�, and the length of the se-
quences is 236.
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FIG. 5. Dependence of the exponent � on the parameter r. The
homogeneous system is represented by r=0.
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odic model. But �= �d−yh� /yt �yh is the field scaling expo-
nent� and yh is seen to vary very little with r. In fact, our
results for � �see Fig. 6�, given by yh / �d−yh�, show that,
although this exponent depends on r for the period-doubling
sequence, it varies much less than �. So the variation of this
exponent is linked almost entirely to yt and it increases for
the aperiodic model �in fact, this picture is also observed for
random disorder�. In Fig. 7, we depict d�log10 �� /d�log10 t�
as a function of log10 t, for r=1 and 6: again, the dependence
on r is evident. This figure makes clear the need of a second
harmonic, to adjust the curve for r=6. The increase of the
error bars for small values of log10�t� in Figs. 4, 6, and 7 is a
finite-size effect: the smaller t, the greater the correlation
length, and the size of the Bethe lattice �or, equivalently, the
size of the aperiodic sequence� must be increased, to reach
the limit where the infinite-volume behavior is obtained.

We summarize our results in Table I, where we show the
values of the three exponents for the period-doubling se-
quence and r=0, 1, and 6. For r=0 we show the exact results
on the Bethe lattice: our numerical values agree with them
within error bars. The exponents clearly depend on r; never-
theless, the usual relation among the three exponents,
namely, �=� / ��−1�, is satisfied for r=1 and is just satisfied
for r=6 �see rows 3 and 4 in Table I�.

Preliminary results obtained for the spin-1 Ising model
lead to exactly the same behavior as for its spin-1/2 counter-
part. As the former model is the Blume-Capel �BC� one with
zero crystal field � and the latter corresponds to the BC
model with �=−
, we can infer that our results hold for the
BC Hamiltonian and for all values of � such that the transi-
tion is continuous in the uniform case. Also, the results we
obtain for the Blume-Capel model are not expected to de-
pend on which interaction the disorder acts on, according to
the following renormalization-group reasoning. Even if, ini-
tially, only the exchange constants follow an aperiodic se-
quence, the crystal field will not be uniform in the coarse-
grained system, which is equivalent to the original one.

As a final note, we would like to mention that Eq. �2�
assumes that the relation between the number of letters A and
B at stage n+1 of the iteration process depends linearly on
the number of letters A and B at stage n, namely,

NA
�n+1� = aNA

�n� + bNB
�n�, NB

�n+1� = cNA
�n� + dNB

�n�, �13�

where a, b, c, and d are the elements ot the matriz M. The
former relation does not hold true for the Bethe lattice, since
the letters A on different generations of the lattice do not lead
to the same number of letters A and B �the same is true for
the substitution of letters B� in the inflation process. Thus, as
long as we cannot define the substitution matrix for aperiodic
sequences on Bethe lattices, we are not able to determine the
exponent 	 in these cases.

In summary, we have studied the Ising model on a Bethe
lattice, in the mean-field limit, such that the exchange con-
stants follow two different aperiodic sequences: the Fi-
bonacci and period-doubling ones. The results are as follows.
For the Fibonacci sequence, the exponent are classical,
namely, �=1 /2, �=1, and �=3. For the period-doubling se-
quence the exponents depend on the ratio of the interaction
constants, but satisfy the usual relation among critical expo-
nents for any value of r. Therefore, we show that mean-field-
like procedures may lead to exponent values different from
the classical ones. In this particular case, although thermal

-7 -6 -5 -4 -3
log

10
(t)

0.8

1

1.2

1.4

d
lo

g 10
(

χ)
/d

lo
g 10

(t
)

r = 1
r = 6
γ = 1.0197(2)
γ = 1.1499(4)

FIG. 7. Logarithmic derivative of the suscep-
tibility as a function of the reduced temperature
for the period-doubling sequence, with r=1 and
6. The exponent � is different from the classical
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TABLE I. Values for the exponents �, �, and � for the period-
doubling sequence, for r=0, 1, and 6. In the third and fourth rows
we show evaluations of �, calculated from � and � and directly
from our data, respectively. Note that the results in the first column
are exact ones: our numerical values agree with them, within error
bars. Numbers inside parentheses are errors in the last decimal
figures.

r=0 r=1 r=6

� 1 1.0197�2� 1.1499�4�
� 3 3.0006�2� 3.0266�9�

� / ��−1� 1/2 0.5097�2� 0.5674�5�
� 1/2 0.5093�4� 0.5664�5�
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fluctuations are suppressed by the mean-field character of the
procedure we use, geometrical fluctuations present in the se-
quences are treated exactly. Preliminary results for lattices
with finite coordination number z show the same qualitative
behavior as for the mean-field limit �z→
�.
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